
Proceedings of the International Conference on Cybersecurity and Cybercrime Vol. X / 2023

197

Unit Testing and Automate Security Testing

Roxana PRUTEANU

Faculty of Electronics, Telecommunications and Information Technology,

University POLITEHNICA of Bucharest, Romania

roxana.pruteanu@stud.etti.upb.ro

Abstract

In the current context, technology plays a crucial role in our lives, from the moment we wake

up until the end of the day we interact directly or indirectly with this new world. Since it appeared,

its purpose has been to come to the aid of humanity, to evolve in an efficient and effective way and

with all that, it also represented an open door for people who used technology in an obscure way.

The number of cases of cyber-attacks has increased exponentially, from data theft to the integrity of

critical sectors (health, transport, energy, financial), every possibility was tried to be exploited,

leading to serious consequences. Awareness is the first step towards safety, and further it is important

how to use technology in order not to be the target of attacks, but also to stay informed and to become

better persons in daily activities. This paper presents an analysis of automated testing for software

applications, what it is, how automated testing is divided, the benefits brought by it, as well as unit

testing details and some examples. Finally, automatic security testing is discussed, the most emerging

web application security risks, suggestions about Android security testing tools and some automation

frameworks. The focus is on creating an overview, differentiating between the terms used and

exemplifying them.

Index terms: Automated Testing, Unit Testing, Development Testing, Dynamic Testing,

Automated Security Testing

1. Introduction

To ensure the reliability of the software produced, a crucial term appears in software

development: testing. Testing as part of Software Development Life Cycle is the phase where all

activities that address the implications of producing quality products, work according to customer

requirements and, although it does not add quality to the final product, testing contributes to a high-

quality product. The smallest part that builds the software quality testing base is unit testing, and from

this point a good quality program is built, saving time and costs. But unit tests can be written/executed

manually as any regular program, however, living in the age of speed, unit tests acquired a new, more

advantageous form, that of automated tests. In the following topic, automatic testing will be explained

to understand its role at present, the advantages it comes with, but also the influence in the other test

blocks. Then, unit testing will be analyzed, steps in a process of running unit tests, an example of a

piece of the production code and an example of a false unit test.

Last but not least, a rather important topic in the current context, which grabs attention is

security automation and testing. In this section, security testing is presented as a vital part of the

quality assurance process, the terms are exemplified to create an improved overall image, the top ten

web application security risks were presented, suggestion of Android security tools and the

automation frameworks that may help in various kinds of security testing scenario. And finally, the

paper ends with conclusions in Section 4.

https://proceedings.cybercon.ro/

Proceedings of the International Conference on Cybersecurity and Cybercrime Vol. X / 2023

198

2. Automated testing for software applications

Software testing is one of, if not the most critical phase of the Software Development Life Cycle

and in this phase are measured the quality assurance criteria and the Key Performance Indicators

already set for releasing software in the production environment. Software testing, as part of the

Software Development Life Cycle, has seen exponential growth in both directions of types of testing

and volumes of testing. Quality is often sacrificed in order to release software as quickly as possible.

Testing has many benefits, including the confidence in the delivered code quality and increased

application reliability [1]. All the activities of software testing can be conducted by two means:

automated testing and manual testing. Manual testing is considered the fundamental software testing

and is done without using automation tools or scripting [2].

One of the most dynamic parts of software testing is automated testing. Automation testing

reduces both regression time and the overall costs. The most used automated testing types are

Automated Unit Tests, Automated Functional and Non-Functional Tests, Automated Regression

Tests, Automated Deployments. The automated testing will provide the following benefits: faster

release cycles, extended test coverage, better code quality, improved reliability. Automated testing

must be realized using proper tools that provide advanced capabilities for optimization, execution,

and reporting [1]. The testing tool executes the test plan in order to assess both functional and non-

functional attributes for the software iteration under test. The aim of automated testing is to reduce

repetitive tests for a redundant action and to gain time, but is not a replacement for a manual testing.

Organization’s success strongly rely on the quality of their products. To develop a product of

good quality and without any critical/major defects within the cost and time constraints have become

critical and implementing such products is a difficult task. Software testing is performed to evaluate

correctness and functionality of software for assuring fulfillment of user requirements and the

expected quality. “IEEE defines software testing as the process to evaluate the system or its

components manually, or by automated means to determine whether it fulfills the user requirements,

or to find the difference among actual result and expected result” [2]. Therefore, the purpose of

software testing is to execute a software to identify defects or any missing features that were expected

by the user requirements. If it is executed appropriately, software testing results in improved quality

and effectiveness of the software system. The reduction of maintenance costs is done by detecting the

defects in a software and removing those defects before the release of software.

Test cases describe the complete test scenario in terms of actions to be performed during testing,

but when the automatic testing is performed, there is no manual navigation through the different parts

of the application, the testing is conducted through some testing tool. Initially, only manual testing

was performed, which did not ensured a good quality of software systems, and few defects may be

ignored or unidentified through manual testing because of human errors. This situation led to the

evolution of automatic testing, being useful in quicker testing process, recently many testers prefer to

use automated testing for the variety of software systems. “The basic element behind automated

testing is the automated testing tool that is used to conduct the tests” [2].

Due to the popularization of automated testing in software industries, the testing process

become more effective, this one helps in easily executing various tests like performance testing and

regression testing and many difficult testing activities got easier than before, as the automated testing

evolved and improved. Automated software testing conducts the tests for various datasets and the

tests can be executed repeatedly without human involvement, it can be performed in various phases

(e.g. preparation of test plan or developing the test cases, selecting the testing tool, creation of the test

script and finally executing the test by using the automated testing tool and the script). Testing

automation results in improved efficiency, the main objective of automating software testing is to

reduce the testing effort, costs and time, and to reduce human involvement in the testing process as

https://proceedings.cybercon.ro/

Proceedings of the International Conference on Cybersecurity and Cybercrime Vol. X / 2023

199

much as possible. “Automated testing supports the reusability of test scripts, using the testing tool,

for different upgrades of the system under test. Automated testing has the following benefits:

• Tests are repeatable and reusable,

• Simplified regression testing,

• Reduces time and costs,

• Performance testing is possible due to simultaneous testing.

Automated testing has the following drawbacks:

• It is more expensive than manual testing,

• All areas cannot be automated,

• Manual testing cannot be fully discarded” [2].

2.1. Unit Testing

Viewed in the light of developer testing activities, testing is an activity performed to ensure

correctness and quality of software (we can verify its functionality, measure progress while

developing it) and this process start with unit testing. Unit testing is an integral part of development

[3], and this type of testing is based on testing the smallest piece of code that can be logically isolated

in a system, it is the easiest, fastest, and most consistent way to verify developers’ assumptions about

the code they produce [6]. According ISTQB (International Software Testing Qualification Board),

unit tests are the first level of dynamic testing in the software testing process [3], is usually performed

by developers, testers and QA engineers (they are written by developers and often involves a

collaboration between these roles) and it helps uncover early bugs and flaws in application code [9].

Productivity is lower for software supported by tests, but it’s kept constant over time, when they plot

productivity versus time for software with and without tests. Initially, for software without unit tests,

productivity is higher, but it plummets after a while and becomes negative [6]. According to the test

pyramid, the higher the level, the higher the involved costs. This effect is multiplied because the

involved cost increases involve:

• Setting up the tests,

• Maintenance of existing tests,

• The cost of test execution,

• Test result waiting time,

• Analysis and resolution time when a bug is detected [3].

The process of running unit tests consists of four steps:

1. Creating test cases: this stage requires writing multiple test cases for web applications,

2. Review and re-write: written test cases are reviewed and re-write if there are any

mistakes,

3. Baseline: it is checked if each line of code is in a manner or another,

4. Execution: it is performed test execution using an online Selenium Grid [9].

To create a clearer picture, we have the following example which shows a unit test for a piece

of the production code [10]:

import pytest

#Production Code

def str_len(theStr):

 return len(theStr)

#A Unit Test

def test_string_length():

 testStr = "1" // Setup

 result = str_len(testStr) // Action

 assert result == 1 // Assert

https://proceedings.cybercon.ro/

Proceedings of the International Conference on Cybersecurity and Cybercrime Vol. X / 2023

200

“The production code is the function that returns the length of past in string and the unit test is

a single positive test case that verifies the length of one has returned for a string with one character

in it. The test string length call is the unit test for the string length production code.” This structure

represents a common structure that all unit tests should follow being composed of three steps: a setup

step where it creates a test string, an action step where calls a production code to perform the action

that is under test, and the last one an assertion step, where the test validates results of the action [10].

After the unit tests are performed, the “higher-level tests” follow (integration tests, system tests,

system integration tests, solution tests, acceptance tests) [6], but there is a family of tests that shares

some characteristics with unit tests and some with higher-level tests, which tends to cause confusion.

A common trait of such tests is that they’re not unit tests although they seem, due to the fast execution

time - in the range of 1 to 2 seconds - these tests they look deceivingly simply and are fast, but they’re

often integration tests, or even system tests. How do they make it into the unit test suite? The most

plausible reasons are: they are not classified (if no attention is paid to how and when different tests

are done, these tests end up in unexpected places), the test suite is small (if the test suite consists of a

small number of unit tests it doesn't matter if some of them take a few extra seconds to run), hurry (

for example, in the beginning of a project it is wanted to prove that the product has the potential to

be commercially viable and in this stage, fast medium tests may live in the unit test suite). The easiest

way to recognize these tests is to see a concrete example that have been appearing rather consistently

in developers' projects over the years, named tests using In-memory databases.

Various SQL-compliant in-memory database implementations exist that are very fast, which

not just only do they perform reads/writes much faster than databases that make use of disk storage,

but they’re also easier to set up, because they require virtually no installation and provide

programmatic APIs for configuration. Databases are an important component for tests that require a

data source and that validate vendor-agnostic functionalities. Let's take the case of the authentication

because it is complicated and this is quite a good case, AuthenticationManager class uses the database

correctly and that password hashing seems to work as expected, but nevertheless it is not a unit test.

It loads classes, starts a database, and establishes a connection to it, at the time of writing, it ran in

less than a second [13].

private Connection conn

def setupSpec() {

 Class.forName("org.hsqldb.jdbc.JDBCDriver")

 conn = DriverManager.getConnection("jdbc:hsqldb:mem:db", "SA", "")

 Sql.newInstance(conn).execute(

 "CREATE TABLE users(id BIGINT IDENTITY, " +

 "name VARCHAR(45), "+

 "password_hash VARCHAR(45))")

}

def "Authenticate user"() {

 given:

 Sql.newInstance(conn).execute("INSERT INTO users " +

 "(id, name, password_hash) VALUES (NULL, 'regular_user', '%ReG^7@R')")

 expect:

 new AuthenticationManager(conn).authenticate("regular_user", "secret")

}

Any application can host a multitude of opportunities to create tests similar to unit tests by

running just as fast, but which in essence are not, they are part of the category of false unit tests. The

least common denominator of these tests is that they all start a server somehow, but server took

relatively little time to start, so waiting has been acceptable. One in-memory database test takes one

second, ten of the same tests 2 seconds and combining this with other almost unit tests, the unit test

suite will start getting sluggish. If the latency will pass a certain threshold, the tests will no longer be

https://proceedings.cybercon.ro/

Proceedings of the International Conference on Cybersecurity and Cybercrime Vol. X / 2023

201

executed, but leaving that aside, running these tests as unit tests is not a good idea, they make test

suite more brittle and sensitive to environment settings [13][14].

Unit tests, even in the absence of test-driven development (TDD), are vital when writing new

code (because they contain the highest amount of detail), their presence ensures that the code is

testable, and they serve as specifications [6]. In those analyzed previously, the first safety net for

catching bugs are unit tests, tests made in the production code, they build and run in the development

environment [10].

3. Security automation and testing

Security testing is an integral part of the testing process, which verifies the software's

vulnerability to cyber-attacks and tests the impact of malicious or unexpected inputs on its operations.

These tests are evidence that systems and information are safe and reliable, and unauthorized entries

are not accepted [4]. Returning to what was previously presented, about the dynamic part of software

testing and its most used parts, automated functional and non-functional testing [1] represent

subdivisions that cover different requirements regarding software testing. Dynamic testing includes

functional testing, which focuses on what the software does, if software’s functions are working

properly, and non-functional testing which focuses on the design and correct configuration of the

application (targets a solution’s quality attributes, these being usability, reliability, maintainability,

security, portability, etc. [6] [14]), security testing being part of non-functional testing [4].

 For example, to differentiate functional from non-functional testing:

• A functional unit test: is considered a unit test of a sorting algorithm who verify that the

input is indeed sorted,

• A non-functional unit test: the previous sorting algorithm it is subject to a unit test that

times it to make sure that it runs within a specified time constraint.

Probably, this example seems not to be part of the present chapter, but this is aimed at

differentiating terms according to context, security testing was described as part of non-functional

testing, but the example can be extrapolated to security too. For example, a functional security test

may be about a user who logging in nonprivileged, and attempting to do something in the system that

only users with administrative privileges are allowed to do [14]. This example was created for a better

understanding, security testing will be used further as part of non-functional testing.

The purpose of security automation is to reduce repeated manual testing and increase testing

coverage in an efficient manner. According to OWASP, they presented top 10 web application security

risks. “Using the OWASP Top 10 is perhaps the most effective first step towards changing the

software development culture within organizations into one that produces more secure code” [8].

Fig. 1. Top 10 web application security risks [8]

Some categories have changed from the previous installment of the OWASP Top Ten, but it

takes time to integrate these tests into tools and processes, and in the figure presented previously is a

https://proceedings.cybercon.ro/

Proceedings of the International Conference on Cybersecurity and Cybercrime Vol. X / 2023

202

high-level summary of the category changes. Top ten is an awareness document, it is the bare

minimum and just a starting point for a coding or testing standard [8].

Next is presented a suggestion of Android security testing tools:

Table 1. Suggested Android security testing tools and approach [5]

Scanning

approach
Automated tools Description

Secure code

scanning
Fireline

Static Java source code scanning. It's a light-weight secure code

scanning tools, but it may require the Java source and the reverse of

APK.

Privacy and

sensitive

information scan

Androwarm

The focus is on privacy and sensitive information scanning of any given

APK. Static analysis of the application's Dalvik bytecode, represented

as Smali for PII and sensitive information leakage or exfiltration such as

telephony identifiers, geolocation information leakage, audio/video flow

interception, and so on.

Light-weight all in

one APK security

scanning

Quick Android

Review Kit

(QARK)

It's a Python program that can automatically do security scanning of any

given APK.

All in one security

scanning

Mobile Security

Framework

(MobSF)

The MobSF is similar to QARK. In addition, MobSF supports Android,

Windows, and iOS applications. It not only does the static security

analysis, but also does dynamic runtime behavior analysis.

Android application security testing techniques include: the source code scan, privacy

information inspection, reverse engineering of an APK, the adoption of automated security testing

frameworks (for example QARK or MobSF) [5]. There are some key considerations when is required

selecting security automation tools and these selected may depend on the integration of the existing

automation testing framework [7]. In general, a security automation framework includes security

testing tools, a web service, testing results, an automation framework (for example Robot

Framework), automation scripts, and security payloads. “Security testing tools are in charge of testing

for specific security vulnerabilities, such as cross-site scripting (XSS) and SQL injection, and also

analyze HTTP responses for security issues, security testing tools may provide initial testing reports

and testing results can be further integrated by either a testing framework” [12].

Automated UI testing may only cover the scenarios from a user perspective, while the system

testing may cover more business logic and user expectations. The following table shows the

automation frameworks that may help in various kinds of security testing scenario:

Table 2. Automation frameworks [11]

Types of automation

frameworks
Usages

Web UI automation (Selenium or

Robot Framework)

User registration flow

Authentication/authorization flow

Shopping cart and Payment flow

Forget password flow

PII (Personally identifiable information) – sensitive operations, such as

Profile update

API testing (JMeter, Postman) RESTful API testing with injection payloads

Behavior-driven development

(BDD) testing (Robot

Framework or Gauntlt)

When a BDD framework is applied to security testing, the purpose is to

enhance cross-team communication and enable a non-security team to

understand how security is covered

Fuzz Testing Security payload testing with various injection and buffer-overflow testing

Data-driven testing (DDT)

DDT testing is normally done with fuzzy testing

DDT is normally included in the unit testing framework of the programming

language

https://proceedings.cybercon.ro/

Proceedings of the International Conference on Cybersecurity and Cybercrime Vol. X / 2023

203

“The Selenium Web UI framework is used to walk through the UI flow for security tools to

inspect security issues, JMeter can be used with security payloads to do RESTful API security testing.

Robot Framework can be integrated with ZAP to introduce BDD testing into the security testing

cycle. Robot Framework is a common keyword driven testing acceptance automation framework, and

Gauntlt is a purpose-built for security BDD framework in Ruby” [11].

To produce secure software systems, all aspects of the development environment must be in

symbiosis, including the organizational culture, the tools used, the use of libraries and code

repositories, the standards and processes used by the organization. The development environment can

be considered a major source of potential vulnerabilities, so it is necessary that the development

environment to be well-managed and secure in order to be able to produce secure, quality software

systems, the end product being the image of the environment in which it was produced. The tools

used to develop secure software systems need to be reviewed carefully to ensure that using the tool

does not insert new vulnerabilities into the development process. The final results are directly affected

by the quality of the tools used in the development process, and the process of choosing the necessary

tools must be carefully approached [7]. Manual security testing are still important in creating a

completely secure software (such as full penetration tests or security audits), but organizations must

automate security testing and perform these for the most part, preferably with every change to

applications or computing infrastructure. Security must be incorporated into every part of the

development process to ensure a continuous integration (CI) and to reduce compliance costs [4].

Security requires a large part of our attention in the development process, being a key aspect in the

quality assurance process.

4. Conclusions

In this paper were introduced notions such as automated testing, the most used types of

automated testing, the benefits of automated testing, included in section 2 of this study. The

automation process is in full development, it monopolizes most fields and especially in the creation

of high-quality software is present. It was wanted to explain these notions as clearly as possible, and

after that the basis of software development will be discussed in detail: unit testing. The notion of

unit testing represents the key to starting software testing with purpose to ensure correctness and

quality of software. In this section the purpose was to exemplify why it is important this type of test,

how such a test is composed and how it differs from other higher-level tests. And the same with unit

tests, which ensure quality in the testing environment, security testing aims with maintaining quality

high. This process evidence that system and information are safe and reliable, and unauthorized

entries are not accepted. In section 3 the subject is discussed at length, differentiates from the

previously presented notions and some suggestions of Android security testing tools, a suite of

automation frameworks and top ten web application security risks. The research will be continued by

constructing more advanced cases scenario and an implementation of the notions discussed.

References

[1]. Flaviu Fuior, ”An overview of some tools for automated testing of software applications,”

in Romanian Journal of Information Technology and Automatic Control, Vol. 29, No. 3,

97-106, 2019.

[2]. Haneen A., Maham K., Zainab S., Muhammad I.B., Saima C., Furkh Z., Muhammad J.,

Summiyah S., Shahid N.B., “A Comparative Analysis of Quality Assurance of Mobile

Applications using Automated Testing Tools” in International Journal of Advanced

Computer Science and Applications,Vol. 8, No.7, 2017.

https://proceedings.cybercon.ro/

Proceedings of the International Conference on Cybersecurity and Cybercrime Vol. X / 2023

204

[3]. Alexander Aubert. (2020, June 25th). “Why invest in unit testing?”. Available:

https://blog.atinternet.com/en/why-invest-in-unit-testing/.

[4]. Oliver Moradov. (2022, May 29th). “Security Testing: Types, Tools, and Best Practices”.

Available: https://brightsec.com/blog/security-testing/.

[5]. Tony Hsiang-Chih Hsu, “Android Security Testing” in Practical Security Automation and

Testing, 2019, ch.7, Available: https://learning.oreilly.com/library/view/practical-

security-automation/9781789802023/1f29016b-1353-4061-81c2-1a82a45d1ea6.xhtml.

[6]. Alexander Tarlinder, “Developer Testing Activities” in Developer Testing: Building

Quality into Software, 2016, ch. 1, pp. 1-8.

[7]. Erik Fretheim, Marie Deschene, “The Development Environment”, in Secure Software

System, ch. 13, pp. 221-227.

[8]. Andrew van der Stock, Brian Glas, Neil Smithline, Torsten Gigler. (2021 September

24). “OWASP Top 10:2021”, Available: https://owasp.org/Top10/.

[9]. LAMBDATEST, “Unit Testing Tutorial: A comprehensive Guide With Examples and

Best Practices”. Available: https://www.lambdatest.com/learning-hub/unit-testing#n.

[10]. Richard Wells. (2018, June 6th). “What is unit testing?”, Available: https://www.linkedin.

com/learning/unit-testing-and-test-driven-development-in-python/what-is-unit-

testing?autoplay=true&u=2037052.

[11]. Tony Hsiang-Chih Hsu, “Automating existing security testing” in Practical Security

Automation and Testing, 2019, ch. 2, Available: https://learning.oreilly.com/library/

view/practical-security-automation/9781789802023/f3a726d8-f7a4-4cd0-a0c4-

fe694e30bb69.xhtml.

[12]. Tony Hsiang-Chih Hsu, “Project Background And Automation Approach” in Practical

Security Automation and Testing, 2019, ch. 10, Available: https://learning.oreilly.

com/library/view/practical-security-automation/9781789802023/34cbdd6a-f26f-4ca0-

8c83-a2f125615967.xhtml.

[13]. Alexander Tarlinder, “Almost Unit Tests” in Developer Testing: Building Quality into

Software, 2016, ch. 11, pp. 151-157.

[14]. Alexander Tarlinder, “The Testing Vocabulary” in Developer Testing: Building Quality

into Software, 2016, ch. 3, pp. 21-36.

https://proceedings.cybercon.ro/
https://blog.atinternet.com/en/why-invest-in-unit-testing/
https://brightsec.com/blog/security-testing/
https://learning.oreilly.com/library/view/practical-security-automation/9781789802023/1f29016b-1353-4061-81c2-1a82a45d1ea6.xhtml
https://learning.oreilly.com/library/view/practical-security-automation/9781789802023/1f29016b-1353-4061-81c2-1a82a45d1ea6.xhtml
https://owasp.org/Top10/
https://www.lambdatest.com/learning-hub/unit-testing#n
https://www.linkedin.com/learning/unit-testing-and-test-driven-development-in-python/what-is-unit-testing?autoplay=true&u=2037052
https://www.linkedin.com/learning/unit-testing-and-test-driven-development-in-python/what-is-unit-testing?autoplay=true&u=2037052
https://www.linkedin.com/learning/unit-testing-and-test-driven-development-in-python/what-is-unit-testing?autoplay=true&u=2037052
https://learning.oreilly.com/library/view/practical-security-automation/9781789802023/f3a726d8-f7a4-4cd0-a0c4-fe694e30bb69.xhtml
https://learning.oreilly.com/library/view/practical-security-automation/9781789802023/f3a726d8-f7a4-4cd0-a0c4-fe694e30bb69.xhtml
https://learning.oreilly.com/library/view/practical-security-automation/9781789802023/f3a726d8-f7a4-4cd0-a0c4-fe694e30bb69.xhtml
https://learning.oreilly.com/library/view/practical-security-automation/9781789802023/34cbdd6a-f26f-4ca0-8c83-a2f125615967.xhtml
https://learning.oreilly.com/library/view/practical-security-automation/9781789802023/34cbdd6a-f26f-4ca0-8c83-a2f125615967.xhtml
https://learning.oreilly.com/library/view/practical-security-automation/9781789802023/34cbdd6a-f26f-4ca0-8c83-a2f125615967.xhtml

